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Abstract— The main goal of this work is to locate fault in 

an electric power system with the optimal practically 

achievable accuracy. The method employed in this work 

makes use of phase voltages and phase currents (scaled 

with respect to their pre-fault values) as inputs to the neural 

networks. Typical faults such as single line-ground, line-

line, double line-ground and three phase faults were 

considered and separate Artificial Neural Networks (ANNs) 

have been proposed for each of these faults. Since Back 

Propagation neural networks are very efficient when a 

sufficiently large training data set is available, it has been 

chosen for all the three steps in the fault location process 

namely fault detection, classification and fault location. The 

average and the maximum error percentages are in 

tolerable ranges and hence the network’s performance is 

considered satisfactory. It can be seen that there is a steady 

decrease in the gradient and also that the number of 

validation fails did not exceed 1 during the entire process 

which indicates smooth and efficient training because the 

validation and the test phases reached the Mean Square 

Error performance (MSE) goal at the same time 

approximately. 

Keywords— Double-Circuit Line Fault, Ground Fault 

Location, Line – Line Faults, Fault Location Algorithms. 

 

I. INTRODUCTION 

High voltage transmission lines cover long distances, 

hundreds of kilometers, particularly when the line passes 

through hilly and harsh terrains. When a fault occurs on 

these transmission lines it is extremely difficult to patrol the 

line from tower to tower to identify the faulty spot. 

Accurate identification and location of faults does not only 

save time but also saves power.  

Power system operators need accurate information to enable 

speedy deployment of men and machinery to the fault’s 

location in order to rectify the fault thereby saving lot of 

time and resources. Using software applications, 

communication systems such as Supervisory Control and 

Data Acquisition (SCADA) and Power Line Carrier 

Communication (PLCC) hardware system can be designed 

for fault location. Data from SCADA such as oscillographs, 

relays and the sequence of events are used for fault location.  

Now available latest technology GPS can be used to locate 

a fault on long high voltage transmission lines. Self 

monitoring hardware devices are configured at foundation 

sites for both conditions by inserting the information of a 

fault location (GPS) into Geographical information system 

computer. 

 

1.1 Existing Double-Circuit Line Fault Location 

Algorithms 

Diverse fault location algorithms designed for double-

circuit lines have been developed in the past few decades 

and will be henceforth reviewed. In the phasor-based fault 

location category, some methods utilize only one-terminal 

data to locate a fault. Akke & Thorp (2016) assume that the 

angles of a fault current and the fault current distribution 

from the load end are equal. They propose an algorithm that 

utilizes one-terminal voltage and current data. Because of 

their approximation the accuracy of their fault location is 

affected by the fault resistance and the asymmetrical 

arrangement of the transmission lines (Anderson, 2015). 

Eriksson et al. (2016) employed phase voltages and currents 

from the near end of the faulted line, and a zero-sequence 

current from the near end of the healthy line as input 

signals. To fully compensate the error introduced by the 

fault resistance (or the impact of the remote in-feed), source 

impedance values are required. 

 

Kawady and Stenzel (2014) used a modal transformation to 

decouple the initially coupled transmission lines. Their 

method utilizes as input voltage and current phasors from a 

locally installed relay. Compared with Eriksson et al. 

(2016), this algorithm does not need source impedances. It 
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modifies the apparent impedance seen from the relay 

location. This is, however, based on the assumption that the 

line is homogeneous. Simulations show that the accuracy is 

still sufficient when the algorithm is applied to an 

untransposed structure. Also, the effects of load current, 

shunt capacitance and fault resistance are negligible for the 

purpose of fault location. 

Alessandro, Silvia & Ennio (1994) constructed a voltage 

equation from the local end through a faulty line to the fault 

point. Then they constructed another voltage equation from 

the local end, through a sound line and a faulty path, to the 

fault point. The remote in-feed can then be eliminated by 

inserting one equation into another. Then, three such 

equations for positive-, negative- and zero-sequence circuits 

were obtained. Next, based on the boundary conditions for 

different fault types, these three equations can be combined 

differently in order to solve for the fault resistance and the 

fault distance. Their algorithm is independent of fault 

resistance, load currents and source impedance. However, 

their model neglects shunt capacitance for long lines. 

Non-earth faults on one of the circuits of parallel 

transmission lines are dealt with in (Das & Novosel, 2013). 

Similar to Dalstein & Kulicke (2016), the authors 

established three voltage equations from the local end via a 

faulty line to the fault point, based on three phase networks. 

Then these three equations are added, forming an equation 

with fault resistance and fault current as unknowns. Next, 

by applying the Kirchhoff voltage law (KVL) the fault 

current can be expressed as a function of fault distance. 

Solving for the fault resistance and the fault distance is then 

trivial. This algorithm is not influenced by fault resistance, 

load currents and source impedance. It, however, does not 

consider shunt capacitance, which will introduce errors for 

the fault location on long transmission lines. 

The fault distance equations in (Cook, 2015) all include the 

current phasors of the adjacent sound line's local-end, which 

are assumed known. However, in some practical systems 

such current phasors are not available. Ahn et al. (2013) 

also construct the voltage equations that contain the sought-

after fault resistance and fault location. By introducing the 

concept of current distribution factors the influence of the 

load current is eliminated. Since the formula for calculating 

the fault distance includes both local and remote source 

impedances, errors are introduced. The algorithm, however, 

is robust enough since it is largely insensitive to the 

variation in source impedances. 

Izykowski et al. (2013) utilized all the voltage and current 

phasors of the local end from both the sound and the faulted 

lines as input. The zero-sequence impedance of a line will 

adversely influence the fault location accuracy. In the 

expression for the fault path voltage drop, the weight of the 

zero-sequence fault current is set to zero to exclude the 

zero-sequence component. Since the fault distance formula 

does not contain any source impedances, the algorithm is 

neither influenced by the varying source impedances nor by 

the fault resistance. 

Using a technique similar, Cichoki & Unbehauen (2013) 

have developed a fault location algorithm applicable to 

untransposed lines. It utilizes the lumped line model that 

ignores shunt capacitance. Because of that, the accuracy of 

the algorithm is not guaranteed for long transmission lines. 

In summary Bouthiba (2004) is similar in eliminating 

remote infeed. They achieved this by formulating 

appropriate Kirchhoff’s Voltage Law (KVL) equations 

around the parallel lines loop. 

Mazon et al. (2013) introduced a new concept of distance 

factor, which is the ratio of the positive-sequence pre-fault 

currents of both the sound and faulted lines at the local end. 

By comparing this value to the one calculated from system 

parameters when fault occurred, the fault location can be 

evaluated. Their algorithm is not affected by fault resistance 

or load current. Also, fault type classification is not 

necessary. However, the method is sensitive to variations in 

source impedances. 

Next we will review two-terminal and multi-terminal 

algorithms. They usually provide more accurate fault 

location results than one-terminal algorithms, but require 

the synchronization of every terminal. Johns et al. (2015) 

provided a distributed-parameter based algorithm which 

fully considers the effect of shunt capacitance. It requires 

voltage and current phasors from both terminals of the 

faulted line. The algorithm is independent of fault resistance 

and source impedances. It does not require fault 

classification or synchronization of the two terminals. 

Although their method was designed for transposed lines, it 

also works satisfactorily when used for untransposed lines. 

Aurangzeb, Crossley & Gale (2011) have proposed an 

iterative approach to improve the accuracy of fault distance 

estimation in (Das & Novosel, 2013). 

Lawrence et al. (2013) related the voltage and current 

phasors of the sending and receiving ends with ABCD 

parameters, where the fault distance and fault resistance are 

included. For different types of fault, different equations are 

derived. The synchronized phasors of two terminals are 

needed to feed the algorithm. The method can also be used 

for untransposed lines, and is independent of fault resistance 

and source impedances. 

Nagasawa et al. (2013) present an algorithm based on the 

lumped parameter model, which may introduce errors for 

long lines. The procedure needs only the magnitude of the 
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differential current of each terminal. It is the difference of 

the currents in both circuits measured at the same terminal. 

Since their method was developed for three-terminal 

parallel transmission lines, any n-terminal network must be 

converted to an equivalent three-terminal network first. 

Because only the magnitudes of differential currents are 

required, synchronization of the terminals is not necessary. 

The algorithm is independent of fault resistance and of any 

source impedances. Furthermore, it does not demand fault 

classification. However, the approach is designed for 

transposed transmission lines only. 

Funabashi et al. (2011) have presented multi-terminal 

algorithms based on the lumped parameter model. Their 

algorithm 1 is based on an impedance calculation that 

makes use of phase current data at each terminal, phase 

voltage data at the locator terminal, and all the phase 

components of the line impedance. Algorithm 2 introduces 

the current diversion ratio method. It utilizes phase current 

data at each terminal and all the phase components of the 

line impedance. Both algorithms are applicable to all types 

of single-circuit or inter-circuit faults. The fault location is 

independent of fault resistance and the method does not 

require knowledge of source impedances. Since the phase 

component of the line impedance is utilized it is suitable 

both for balanced and unbalanced lines. Fault classification 

is irrelevant for this algorithm, but synchronization of the 

terminal voltages and currents is needed. 

In the realm of time-domain fault location methods, Bo, 

Weller & Redfern (2009) decomposes the trans-mission 

lines into a common component net and a differential 

component net, each of which is a single-circuit network. 

For the differential component net the voltages at both 

terminals are zero. Based on the distributed parameter time-

domain equivalent model, two voltage distributions along 

the line can be calculated from the two terminal currents, 

respectively. The proposed approach exploits the fact that 

the difference between these two voltages is smallest at the 

point of fault. The algorithm has the following advantages: 

 A data window less than one cycle long, satisfying high-

speed tripping requirements. 

 No requirement to synchronize the two terminal 

currents.  

 No need for voltage data. 

 No source impedance exists in the differential 

component net.  

 Independence from fault resistance. 

 Full account of the influence of shunt capacitance. 

 Suitable both for the transposed and untransposed lines. 

All the existent algorithms for double-circuit transmission 

lines have different advantages. Unfortunately, these 

methods share a common drawback, namely that the 

measurements have to be taken from one or two terminals 

of the faulted section, or even at all the terminals of the 

entire network. From a practical point of view the data may 

not be available at the terminals of the faulted line, let alone 

from all the buses. Hence, this research work will bridge the 

gap by analyzing distance protection for EHV transmission 

lines using artificial neural network modules. 

 

II. MATERIALS AND METHOD 

The method employed in this work makes use of phase 

voltages and phase currents (scaled with respect to their pre-

fault values) as inputs to the neural networks. Possible kinds 

of faults such as single line-ground, line-line, double line-

ground and three phase faults were considered and separate 

ANNs have been proposed for each of these faults. Since 

Back Propagation neural networks are very efficient when a 

sufficiently large training data set is available, it has been 

chosen for all the three steps in the fault location process 

namely fault detection, fault classification and fault 

location. 

The main goal of fault diagnosis is to locate fault in an 

electric power system with the highest practically 

achievable accuracy. When the physical dimensions and 

size of the transmission lines are considered, the accuracy 

with which the designed fault locator locates faults in the 

power system becomes very important.  

The fundamental principle of the proposed fault location 

method is to add to the original network a fictitious bus 

where the fault occurs as shown in Figure 1. Hence, the bus 

impedance matrix is augmented by one order. Then, the 

driving point impedance of the fault bus and the transfer 

impedances between this bus and other buses are expressed 

as functions of the unknown fault distance. Based on the 

definition of the bus impedance matrix, the change of the 

sequence voltage at any bus during the fault is formulated in 

terms of the corresponding transfer impedance and 

sequence fault current. Depending on the boundary 

conditions for different fault types, we can obtain the fault 

location equation using voltage phasors as input. 
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Fig.1: A sample wide area monitoring system. 

 

Based on the same augmented bus impedance matrix, 

Voltage and Current Relation (VCR) are employed. Now 

the change of the current at any branch can be expressed as 

a function of the relevant fault current and the transfer 

impedance terms associated with the two ends of the 

branch. Fault location model takes fully into account the 

shunt capacitance. With different boundary conditions for 

the various fault types, the unknown fault location can be 

obtained by properly formulating the fault currents and 

voltages at the fault point. Two subroutines assuming that 

the fault occurs on either side of the series compensator are 

developed. A prescription to distinguish the correct fault 

location from the erroneous one is provided. 

Therefore, this paper presents a system that is capable of 

detecting and locating the fault with less proportion of error. 

This system uses the global positioning system (GPS) to 

locate the position and the global system for mobile (GSM) 

to send these messages to system supervisor. 

 

 

 

III. RESULTS AND DISCUSSION 

3.1 Testing the Neural Network for Single Line – 

Ground Fault Location 

Several factors have been considered while testing the 

performance of the neural networks. One prime factor that 

evaluates the efficiency of the ANN is the test phase 

performance. As already mentioned, the average and the 

maximum error percentages are in tolerable ranges and 

hence the networks performance is considered satisfactory. 

Another form of analysis is provided by Figure 3, which is 

the gradient and validation performance plot. It can be seen 

that there is a steady decrease in the gradient and also that 

the number of validation fails are 0 during the entire process 

which indicates smooth and efficient training. 

The third factor considered while evaluating the 

performance of the network is the correlation coefficient of 

each of the various phases of training, validation and 

testing. Figure 2 shows the regression plots of the various 

phases such as training, testing and validation. It can be 

seen that the best linear fit very closely matches the ideal 

case with an overall correlation coefficient of 0.99924. 
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Fig.2: Regression plots of various phases of learning of the ANN with configuration (6-7-1). 

 

Figure 3 shows the structure of the chosen ANN for single line – ground faults with 6 neurons in the input layer, 7 neurons in the 

hidden layer and 1 neuron in the output layer (6-7-1). 

 
Fig.3: Structure of the chosen ANN with configuration (6-7-1). 

 

Table 1 illustrates the percentage errors in Fault location as 

a function of Fault Distance and Fault Resistance. Two 

different cases have been considered (shown in adjacent 

columns), one with a fault resistance of 20 ohms and 

another with a fault resistance of 60 ohms. It is to be noted 

that the resistance of 20 ohms was used as a part of training 
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data set and hence the average percentage error in fault 

location in this case is just 0.1646 %. The second case 

illustrates the same with a different fault resistance of 60 

ohms which is relatively very high and is not a part of the 

training set. Hence, the performance of the neural network 

in this case illustrates its ability to generalize and react upon 

new data. It is to be noted that the average error in this case 

is just 0.878 % which is very satisfactory. Thus the neural 

networks performance is considered satisfactory and can be 

used for the purpose of single line – ground fault location. 

 

Table.1: Percentage errors as a function of fault distance and fault resistance for the ANN chosen for single line - ground fault 

location. 

 

% Error vs. Fault Distance 

(Fault Resistance = 20 Ω)  

% Error vs. Fault Distance 

(Fault Resistance = 60 Ω) 

Serial 

No: 

Fault Resistance 

(Ω) 

Measured Fault 

Location 

Percentage 

Error 

Fault Distance 

(Km) 

Measured Fault 

Location 

Percentage 

Error 

1 25 25.49 0.163  50 51.56 0.52 

2 75 75.58 0.287  100 101.02 0.34 

3 125 125.12 0.04  150 153.03 1.01 

4 175 175.09 0.03  200 202.67 0.89 

5 225 225.91 0.303  250 254.89 1.63 

 

3.2 Line – Line Faults 

The design, development and performance of neural 

networks for the purpose of Line – Line fault location are 

discussed in this section. Now that we can detect the 

occurrence of a fault on a transmission line and also classify 

the fault into the various fault categories, the next step is to 

pin-point the location of the fault from either ends of the 

transmission line. Three possible line – line faults exist (A-

B, B-C, C-A), corresponding to each of the three phases (A, 

B or C) being faulted.  

 

3.2.1 Training the Neural Network for Line – Line Fault 

Location 

Feed forward back – propagation neural networks have 

been surveyed for the purpose of line – line fault location, 

mainly because of the availability of sufficient data to train 

the network. In order to train the neural network, several 

line – line faults have been simulated on the transmission 

line model. For each pair formed by the three phases, faults 

have been simulated at every 3 Km along a 300 Km long 

transmission line. Along with the fault distance, the fault 

resistance has been varied as 0.25, 0.5, 0.75, 1, 5, 10, 25 and 

50 ohms respectively. Hence, a total of 2400 cases have 

been simulated (100 for each of the three phases with each 

of the eight different fault resistances). In each of these 

cases, the voltage and current samples for all three phases 

(scaled with respect to their pre-fault values) are given as 

inputs to the neural network. The output of the neural 

network is the distance to the fault from terminal A. Hence, 

each input output pair consists of six inputs and one output. 

An exhaustive survey on various neural networks has been 

performed by varying the number of hidden layers and the 

number of neurons per hidden layer. Certain neural 

networks that achieved satisfactory performance are 

presented first along with their error performance plots. Of 

these ANNs, the most appropriate ANN is chosen based on 

its Mean Square Error (MSE) performance and the 

Regression coefficient of the Outputs versus Targets. 

Figures 4 – 5 show the MSE and the Test phase 

performance plots of the neural networks 6 – 10 – 20 – 5 – 

1 with 3 hidden layers. Figures 6 – 7 show the MSE and the 

Test phase performance plots of the neural network 6 – 10 – 

1 with 1 hidden layer. 

Figure 4 shows the performance of the neural network (in 

terms of training, testing and validation) with 6 neurons in 

the input layer, 3 hidden layers with 10, 20 and 5 neurons in 

them respectively and 1 neuron in the output layer (6 – 10 – 

20 – 5 – 1). It can be seen that the best MSE performance of 

this neural network is 0.0073438 which is below the MSE 

goal of 0.01. It was found that the correlation coefficient 

between the outputs and the targets was 0.98469 in this 

case. 
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Fig.4: Mean Square Error performance plot with configuration (6-10-20-5-1). 

 

In order to test the performance of this network, 12 different 

line – line faults have been simulated on different phases 

with the fault distance being incremented by 25 km in each 

case and the percentage error in calculated output has been 

calculated. Figure 5 shows the results of this test conducted 

on the neural network (6-10-20-5-1). It can be seen that the 

maximum error is around 2.75 percent. 

 
Fig.5: Test Phase performance of the ANN with configuration (6-10-20-5-1). 

 

Figure 6 shows the performance of the neural network (in 

terms of training, testing and validation) with 6 neurons in 

the input layer, 10 neurons in the hidden layer and 1 neuron 

in the output layer (6 – 10 – 1). It can be seen that the best 

MSE performance of this neural network is 0.0045535 

which is below the MSE goal of 0.01. It was found that the 

correlation coefficient between the outputs and the targets 

was 0.9825 for this neural network. 
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Fig.6: Mean Square Error performance plot with configuration (6-10-1). 

 

 
Fig.7: Test Phase performance of the ANN with configuration (6-10-1). 

 

In order to test the performance of this network, 12 different 

line – line faults have been simulated on different phases 

with the fault distance being incremented by 25 Km in each 

case and the percentage error in calculated output has been 

calculated. Figure 7 shows the results of this test conducted 

on the neural network (6-10-1). It can be seen that the 

maximum error is around 4.65 percent which is 

unacceptable. 

Figure 8 shows the performance of the neural network (in 

terms of training, testing and validation) with 6 neurons in 

the input layer, 2 hidden layers with 10 and 5 neurons in 

them respectively and 1 neuron in the output layer (6 – 10 – 

5 – 1). It can be seen that the best MSE performance of this 

neural network is 0.002089 which is below the MSE goal of 

0.01. It was found that the correlation coefficient between 

the outputs and the targets was 0.98648 for this neural 

network. 
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Fig.8: Mean Square Error performance of the ANN with configuration (6-10-5-1) 

 
Fig.9: Test phase performance of the neural network with configuration (6-10-5-1). 

 

In order to test the performance of this network, 100 

different phase to phase faults have been simulated on 

different phases with the fault distance being incremented 

by 10 Km in each case and the percentage error in 

calculated output has been calculated. 

Figure 9 shows the results of this test conducted on the 

neural network (6-10-5-1). It can be seen that the maximum 

error is around 1.7 percent which is very satisfactory. It is to 

be noted that the average error in fault location is just 0.97 

percent. Hence, this neural network has been chosen as the 

ideal network for the purpose of line – line fault location on 

transmission lines. 

Figure 10 shows an overview of the chosen ANN and it can 

be seen that the training algorithm used is Levenberg - 

Marquardt algorithm. The performance function chosen for 

the training process is mean square error. Figure 11 plots 

the plots the best linear regression fit between the outputs 

and the targets and the correlation coefficient for the same 

has been found to be 0.98648 which is a decently good 

regression fit. 

 

http://www.aipublications.com/


International journal of Engineering, Business and Management (IJEBM)                                         [Vol-1, Issue-2, July-Aug, 2017] 

AI Publications                                                                                                                                                                            ISSN: 2456-7817 

www.aipublications.com                                                                                                                                                                      Page | 10  

 

 
Fig.10: Overview of the chosen ANN for Line-Line Faults (6-10-5-1). 

 

 
Fig.11: Regression fit of the outputs versus targets with configuration (6-10-5-1). 

 

3.2.2 Testing the Neural Network For Line – Line Fault 

Location 

Several factors have been considered while testing the 

performance of the chosen neural network. One prime 

factor that evaluates the efficiency of the ANN is the test 

phase performance plot which is already illustrated in 

Figure 11. As already mentioned, the average and the 

maximum error percentages are in tolerable ranges and 

hence the network’s performance is considered satisfactory. 

Another means of evaluating the ANN is provided by 

Figure 12, which is the gradient and validation performance 

plot. 

 

It can be seen that there is a steady decrease in the gradient 

and also that the number of validation fails did not exceed 1 

during the entire process which indicates smooth and 
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efficient training because the validation and the test phases reached the MSE goal at the same time approximately. 

 
Fig.12: Gradient and validation performance plot of the ANN (6-10-5-1). 

 

The third factor that is considered while evaluating the 

performance of the network is the correlation coefficient of 

each of the various phases of training, validation and 

testing. Figure 13 shows the regression plots of the various 

phases such as training, testing and validation. It can be 

seen that the best linear fit very closely matches the ideal 

case with an overall correlation coefficient of 0.98648. 

 

 
Fig.13: Regression plots of the various phases of learning of the chosen ANN (6-10-5-1). 

 

Figure 14 shows the structure of the chosen ANN for line – 

line faults with 6 neurons in the input layer, 2 hidden layers 

with 10 and 5 neurons in them respectively and 1 neuron in 

the output layer (6 – 10 – 5 – 1). 
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Fig.14: Structure of the chosen Neural Network (6 – 10 – 5 – 1). 

 

Table 2 illustrates the percentage errors in Fault location as 

a function of Fault Distance and Fault Resistance. Two 

different cases have been considered (shown in adjacent 

columns), one with a fault resistance of 20 ohms and 

another with a fault resistance of 60 ohms. It is to be noted 

that the resistance of 20 ohms was used as a part of training 

data set and hence the average percentage error in fault 

location in this case is just 0.1386 %. The second case 

illustrates the same with a different fault resistance of 60 

ohms which is relatively very high and is not a part of the 

training set. Hence, the performance of the neural network 

in this case illustrates its ability to generalize and react upon 

new data. It is to be noted that the average error in this case 

is just 0.966 % which is still very satisfactory. Thus the 

neural networks performance is considered satisfactory and 

can be used for the purpose of line – line fault location. 

 

Table.2 Percentage errors as a function of fault distance and fault resistance for the ANN chosen for line - line fault location. 

 
 

Table 3 illustrates the percentage errors in Fault location as 

a function of Fault Distance and Fault Resistance. Two 

different cases have been considered (shown in adjacent 

columns), one with a fault resistance of 20 ohms and 

another with a fault resistance of 60 ohms. It is to be noted 

that the resistance of 20 ohms was used as a part of training 

data set and hence the average percentage error in fault 

location in this case is just 0.091 %. The second case 

illustrates the same with a different fault resistance of 60 

ohms which is relatively very high and is not a part of the 

training set. Hence, the performance of the neural network 

in this case illustrates its ability to generalize and react upon 

new data. It is to be noted that the average error in this case 

is just 1.122 % which is still acceptable. Thus the neural 

networks performance is considered satisfactory and can be 

used for the purpose of double line – ground fault location. 
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Table.3:  Percentage errors as a function of fault distance and fault resistance for the ANN chosen for double line - ground fault 

location. 

 
 

Table 4 illustrates the percentage errors in Fault location as 

a function of Fault Distance and Fault Resistance. Two 

different cases have been considered (shown in adjacent 

columns), one with a fault resistance of 20 ohms and 

another with a fault resistance of 60 ohms. It is to be noted 

that the resistance of 20 ohms was used as a part of training 

data set and hence the average percentage error in fault 

location in this case is just 0.178 %. The second case 

illustrates the same with a different fault resistance of 60 

ohms which is relatively very high and is not a part of the 

training set. Hence, the performance of the neural network 

in this case illustrates its ability to generalize and react upon 

new data. It is to be noted that the average error in this case 

is just 0.836 % which is still acceptable. Thus the neural 

networks performance is considered satisfactory and can be 

used for the purpose of three phase fault location. 

 

Table.4: Percentage errors as a function of fault distance and fault resistance for the ANN chosen for three phase fault location. 

 
 

IV. CONCLUSION 

It is very essential to investigate and analyze the advantages 

of a particular neural network structure and learning 

algorithm before choosing it for an application because 

there should be a trade-off between the training 

characteristics and the performance factors of any neural 

network. 

This research work has shown that the lower the sampling 

frequency, the lesser the computational burden on the 

industrial PC that uses the neural networks. This means a 

lot of energy savings because a continuous online detection 

scheme of this kind consumes a large amount of energy, a 

major portion of which is due to the continuous sampling of 

waveforms. The above mentioned are some significant 
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improvements that this work offers over existing neural 

network based techniques for transmission line fault 

diagnosis. 
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